Course code	Course Name	L-T-P -Credits	Year of Introduction				
CS208	Principles of Database Design	2-1-0-3	2016				
Pre-requisite: CS205 Data structures							

Course Objectives

- 1. To impart the basic understanding of the theory and applications of database management systems.
- 2. To give basic level understanding of internals of database systems.
- 3. To expose to some of the recent trends in databases.

Syllabus:

Types of data, database and DBMS, Languages and users. Software Architecture, E-R and Extended E-R Modelling, Relational Model – concepts and languages, relational algebra and tuple relational calculus, SQL, views, assertions and triggers, HLL interfaces, relational db design, FDs and normal forms, Secondary storage organization, indexing and hashing, query optimization, concurrent transaction processing and recovery principles, recent topics.

Expected outcome.

Students will be able to:

- 1. define, explain and illustrate the fundamental concepts of databases.
- 2. construct an Entity-Relationship (E-R) model from specifications and to perform the transformation of the conceptual model into corresponding logical data structures.
- 3. model and design a relational database following the design principles.
- 4. develop queries for relational database in the context of practical applications
- 5. define, explain and illustrate fundamental principles of data organization, query optimization and concurrent transaction processing.
- 6. appreciate the latest trends in databases.

Text Books:

- 1. Elmasri R. and S. Navathe, *Database Systems: Models, Languages, Design andApplication Programming*, Pearson Education, 2013.
- 2. Sliberschatz A., H. F. Korth and S. Sudarshan, *Database System Concepts*, 6/e, McGraw Hill, 2011.

References:

- 1. Powers S., *Practical RDF*, O'Reilly Media, 2003.
- 2. Plunkett T., B. Macdonald, et al., Oracle Big Data Hand Book, Oracle Press, 2013.

Course Plan					
Module	Contents		Sem.ExamMarks		
I	Introduction: Data: structured, semi-structured and unstructured data, Concept & Overview of DBMS, Data Models, Database Languages, Database Administrator, Database Users, Three Schema architecture of DBMS. Database architectures and classification. (Reading: ElmasriNavathe, Ch. 1 and 2. Additional Reading: Silbershatz, Korth, Ch. 1) Entity-Relationship Model: Basic concepts, Design Issues, Mapping Constraints,	06	15%		

	Keys, Entity-Relationship Diagram, Weak Entity Sets,		
	Relationships of degree greater than 2 (Reading:		
	ElmasriNavathe, Ch. 7.1-7.8)		
	Relational Model: Structure of relational Databases,		
	Integrity Constraints, synthesizing ER diagram to		
	relational schema (Reading: ElmasriNavathe, Ch. 3 and		
П	8.1, Additional Reading: Silbershatz, Korth, Ch. 2.1-	06	15%
	2.4) Database Languages: Concept of DDL and DML	AN	
	relational algebra (Reading: Silbershatz, Korth, Ch	AN	
	2.5-2.6 and 6.1-6.2. ElmasriNavathe. Ch. 6.1-6.5)	AT	
	FIRST INTERNAL EXAM	AI	
	Structured Ouery Language (SOL): Basic SOL	1	
	Structure examples Set operations Aggregate		
	Functions nested sub-queries (Reading:		
	ElmasriNavathe Ch 4 and 5 1) Views assertions and		
III	triggers (Reading: ElmasriNavathe Ch 5.2-5.3	07	15%
	Silbershatz Korth Ch. 5.3) Functions Procedures		
	and HI I interfaces (Reading: Silbershatz Korth Ch		
	5 1 5 2)		
	Delational Database Design: Different anomalies in		
	designing a detabase permetization functional	6	
	designing a database, normalization, functional		
	dependency (FD), Armstrong's Axioms, closures,		
	Equivalence of FDs, minimal Cover (proofs not	07	15%
IV	required). Normanzation using functional dependencies,		1570
	INF, 2NF, 3NF and BCNF, lossless and dependency		
	preserving decompositions (Reading: Elmasri and		1
	Navathe, Ch. 14.1-14.5, 15.1-15.2. Additional Reading:		
	Sildersnatz, Korth Ch. 8.1-8.5)		
	SECOND INTERNAL EXAM		
	Firsteal Data Organization. Index structures, primary,		
	Secondary and clustering indices, Single level and	/	
	Multi-level indexing, B-frees and B+-frees (basic	· · · · ·	
•7	structure only, algorithms not needed), indexing on	08	20%
V	multiple keys (Reading Elmasti and Navathe, Ch. 17.1-	00	20 /0
	17.4) Query Optimization: algorithms for relational		
	algebra operations, heuristics-based query optimization,		
	Cost-based query optimization (Reading Elmasri and		
	Navathe, Ch. 18.1-18.3, 18.6-18.8)		
VI	Transaction Processing Concepts: overview of		
	concurrency control and recovery acid properties, serial	08 20%	
	and concurrent schedules, conflict serializability. Two-		
	phase locking, failure classification, storage structure,		
	stable storage, log based recovery, deferred database		

modification, check-pointing, (Reading Elmasri and			
Navathe, Ch. 20.1-20.5 (except 20.5.4-20.5.5) ,			
Silbershatz, Korth Ch. 15.1 (except 15.1.4-15.1.5), Ch.			
16.1 – 16.5) Recent topics (preliminary ideas only):			
Semantic Web and RDF(Reading: Powers Ch.1, 2),			
GIS, biological databases (Reading: Elmasri and			
Navathe Ch. 23.3-23.4) Big Data (Reading: Plunkett			
and Macdonald, Ch. 1, 2)	AN		
END SEMESTER EXAM			

Question Paper Pattern:

- 1. There will be *five* parts in the question paper A, B, C, D, E
- 2. Part A
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module I and II; All <u>four</u> questions have to be answered.
- 3. Part B
 - a. Total marks : 18
 - <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering module I and II; T<u>wo</u> questions have to be answered. Each question can have a maximum of three subparts
- 4. Part C
 - a. Total marks : 12
 - b. <u>Four</u> questions each having <u>3</u> marks, uniformly covering module III and IV; All <u>four</u> questions have to be answered.
- 5. Part D
 - a. Total marks : 18
 - <u>*Three*</u> questions each having <u>9</u> marks, uniformly covering module III and IV;
 <u>*Two*</u> questions have to be answered. Each question can have a maximum of three subparts

6. Part E

- a. Total Marks: 40
- b. <u>Six</u> questions each carrying 10 marks, uniformly covering modules V and VI; <u>four</u> questions have to be answered.

2014

- c. A question can have a maximum of three sub-parts.
- 7. There should be at least 60% analytical/numerical/design questions.